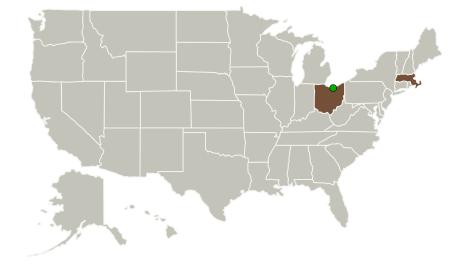
New Combustion CFD Algorithms Designed for Rapid GPU Computations, Phase I



Completed Technology Project (2011 - 2011)

Project Introduction

We propose development of new algorithms specifically designed to exploit the highly parallel structure of graphics processing units (GPUs) for performing the following most expensive, but parallelizable computations in combustion CFD: (1) Chemical kinetics source term (including Jacobian matrix) evaluation; (2) Transport property evaluations; and (3) Matrix factorizations and inversions. The algorithms developed in this work will be implemented as software modules that can be easily interfaced with arbitrary CFD solvers for rapid computations using GPUs. A user guide will be delivered with directions for coupling the provided algorithms with users' CFD programs. Phase I work will demonstrate the computational acceleration achieved using the preliminary algorithms; and Phase II work will optimize the algorithms for improved performance and implement the algorithms as well-documented, distributable software modules as described above. This work will significantly increase the predictive capability of combustion CFD simulations by enabling efficient application of much larger chemistry models (which is essential, but currently prohibitively expensive) for accurately modeling the combustion of practical fuels.

Primary U.S. Work Locations and Key Partners

New Combustion CFD Algorithms Designed for Rapid GPU Computations, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

New Combustion CFD Algorithms Designed for Rapid GPU Computations, Phase I

Completed Technology Project (2011 - 2011)

Organizations Performing Work	Role	Туре	Location
Aerodyne Research,	Lead	Industry	Billerica,
Inc	Organization		Massachusetts
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

Primary U.S. Work Locations	
Massachusetts	Ohio

Project Transitions

0

February 2011: Project Start

September 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138352)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Aerodyne Research, Inc

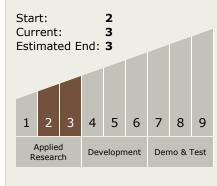
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Oluwayemisi Oluwole

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

New Combustion CFD Algorithms Designed for Rapid GPU Computations, Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

- TX15 Flight Vehicle Systems
 TX15.1 Aerosciences
 TX15.1.7
 Computational Fluid
 Dynamics (CFD)
 Technologies
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

